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In-Line Monitoring of Balling 
Phenomenon in Directed Energy 
Deposition Processes
We develop two in-line monitoring methods—the contact angle (CA) method and the 
weighted mask (WM) method—to efficiently detect balling phenomenon in directed 
energy deposition (DED) processes. These methods are designed to support process devel
opers in controlling the process and minimizing instability. The CA method monitors the 
melt pool’s CA as a direct and explicit indicator for detecting balling, while the WM 
method generates an evaluation number that reflects the likelihood of balling occurrence 
in an implicit but faster manner. Experimental validation compares the WM method and an 
existing acoustic-based audible sound method against the CA method using the same 
dataset of high-speed videos. Using eight threads of an AMD Ryzen™ 9 7940HS CPU, 
the CA and WM methods achieved processing speeds of 665 fps and 903 fps, respectively. 
These results demonstrate that both methods are well-suited for real-time, in-line feedback 
control in DED additive manufacturing, enabling improved defect detection, adaptive 
process control, and optimization of DED parameters. [DOI: 10.1115/1.4070451]
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1 Introduction
Directed energy deposition (DED), a metal additive manufactur

ing technique, holds significant application potential in the fields of 
aerospace [1–3], transportation [4–6], biomedical implants [7–9], 
and remanufacturing [10–12]. Its primary advantage lies in the 
ability to produce high-performance and large-scale components 
and the compatibility to fabricate composite structures [13–17]. 
The rapid heating and cooling rates inherent to the DED process 
also contribute to the high strength of the manufactured compo
nents [18]. Furthermore, compared to traditional subtractive man
ufacturing methods, DED provides higher material efficiency and 
design flexibility, enabling the production of geometrically 
complex structures [13–16]. Nevertheless, the DED manufacturing 
process still faces significant challenges, particularly in optimizing 
process parameters and controlling defects [13–16,19,20]. The use 
of high-energy heat sources for localized melting and material 
deposition makes the process highly sensitive to parameters, such 
as laser power, powder feed rate, scanning speed, melt pool tem
perature, and cooling rate [13–16,19,20]. Inappropriate parameter 
settings can result in melt pool instability, uneven deposition, 

excessive thermal stresses, porosity, cracking, lack of fusion, and 
other defects [15]. These issues are further intensified by the inher
ently dynamic thermal environment, often leading to non-uniform 
microstructures and inconsistent mechanical properties in the final 
part [15,19,20]. To overcome these challenges, in situ monitoring 
and closed-loop feedback control systems have been proposed to 
optimize process parameters and improve product quality [21– 
23]. Various sensing and monitoring techniques, such as image- 
based sensing [24–29], spectral analysis [30–32], X-ray imaging 
[33–35], and acoustic emission [36–39], offer distinct advantages 
but also face significant limitations. Complementary metal-oxide- 
semiconductor (CMOS) or charge-coupled device (CCD) 
cameras capture optical images to analyze melt pool geometry 
[24–26], but their performance can be compromised by laser radi
ation and intense light from the molten metal. Infrared cameras 
monitor thermal profiles and assist in defect prediction, though 
their accuracy depends on precise calibration to account for varia
tions of emissivity across material surfaces [27–29]. Spectral anal
ysis provides information about the melt pool and temperature, but 
is highly sensitive to ambient noise and demands complex calibra
tion procedures [30–32]. X-ray imaging offers high accuracy for 
defect detection but is costly, time-intensive, and currently imprac
tical for in situ monitoring and closed-loop control [33–35]. 
Audible sound techniques enable rapid defect detection but are sen
sitive to environmental noise and printing trajectory [38,39].

Journal of Manufacturing Science and Engineering FEBRUARY 2026, Vol. 148 / 021001-1 
Copyright © 2025 by ASME

mailto:liyangyuan@tamu.edu
mailto:da853127@gmail.com
mailto:mclu@dragon.nchu.edu.tw
mailto:jwang@tamu.edu
mailto:Dan.Feng@howard.edu


In this article, we develop two novel image-based methods—the 
contact angle (CA) method and the weighted mask (WM) method 
—for robust and rapid in-line monitoring of the balling phenome
non in the melt pool during DED processes. Figures 1(a) and 1(b)
show the CAs with normal and balling pools, respectively. Irregu
larly shaped residual material may also appear ahead of the melt 
pool along the machine direction. This balling phenomenon 
occurs when the melt pool does not properly wet the substrate or 
the previously deposited layer, leading to invisible voids or irregu
larities in the final product. Both the CA and WM methods are 
implemented using high-speed videos, with the setup schematically 
shown in Fig. 1(c). For experimental validation, we compare the 
results of the WM method and the audible sound method from a 
previous study [39] with those obtained using the CA method, 
based on the same high-speed video dataset. The processing 
speeds of the CA and WM methods, 665 fps and 903 fps, respec
tively, demonstrate a potential for in-line monitoring and feedback 
control, especially when enhanced through parallel computing with 
multithreading or a higher-performance CPU.

Fig. 1 (a) Normal melt pool, (b) balling melt pool, and (c) schematic of the camera setup integrated with the DED 
machine

2 Methodology
In this section, we describe the CA and WM methods. In the 

illustrations, the melt pool moves from left to right.

2.1 Contact Angle Method. The CA method predicts the 
balling phenomenon by extracting the CA between the melt pool 
and the substrate (or the previously deposited layer). The positions 
of the camera and laser head are fixed with respect to the melt pool 
during the process, allowing us to define a subregion of interest, 
shown in the boxed area in Fig. 2(a), to reduce computational 
cost. On the other hand, choosing a subregion helps the algorithm 
avoid influence from spatter and reflections of light between the 
melt pool and substrate. After this step, we convert the RGB 
image to a grayscale one with an eight-bit unsigned integer 
(unit8) format.

To obtain a binary image, a threshold is applied as a high-pass 
filter as

Tg = a × Imax (1) 

where Imax is the maximum grayscale intensity in the subregion. 
The values above the threshold are set to 1, and values below the 
threshold are set to 0. We choose a = 0.8 and obtain a resulting 
binary image, as shown in Fig. 2(b). The largest connected compo
nent within the subregion is then extracted using either “bwlabel” 

in MATLAB [40] or “cv::connectedComponents” in OPENCV. For each 
row in the resulting binary image, the rightmost nonzero pixels are 
selected and marked to form the set of rightmost points, as shown 
in Fig. 2(c).

Based on the resolution for this case, the five rightmost points 
closest to the substrate are selected to fit the line for calculating 
the CA. Those points are the rightmost points with the largest coor
dinate values in the v-direction. An iteratively reweighted least 
squares method is applied to remove outliers. This method itera
tively computes residuals from a weighted least squares fitting 
(WLSF) and updates the weights assigned to each point based on 
a weighting formula (assigning smaller weights to points with 
larger residuals).

To perform the fitting, the WLSF utilizes the residual error 
function

Jw =
􏽘n

i=1

wi(vi − kui − b)2 (2) 

where wi is the weight assigned to the ith point with image coordi
nates (ui, vi), k is the slope, and b is the intercept. To minimize the 
residual error function, we have

􏽘n

i=1

wi(vi − kui − b) = 0 (3) 

We rewrite Eq. (3) in matrix form and apply least square fitting 
as

k b
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where

U =

u1 1
u2 1
..
. ..

.

un 1

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦, V =

v1

v2

..

.

vn

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦, W =

w1 0 · · · 0
0 w2 · · · 0
..
. ..

. . .
.

0
0 0 0 wn

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦

We assign an initial weight of 1 to each point. At each iteration, 
the residual for each point is computed as

ri = vi − kui − b, (5) 

and the weights are updated using a simplified Cauchy weight func
tion as

wi =
1

1 + |ri|
(6) 
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The iteration process terminates when the residual drops below 
0.01 or when the number of iterations exceeds 1000. Once the iter
ative process terminates, points with weights below a specified 
threshold (we choose 0.1 for this study) are considered outliers 
and are removed from the dataset. CA is then calculated from k 
and serves as the primary indicator for judging the occurrence of 
balling. The selection of the threshold value will be discussed 
later in Sec. 4.

2.2 Weighted Mask Method. The WM method predicts 
balling by generating an evaluation number that reflects the likeli
hood of balling occurrence. The evaluation number is computed as

δ =
􏽘m

i=1

􏽘n

j=1

Ib ⊙ M (7) 

where Ib is an m × n binary matrix indicating the melt pool position 
within the subregion image, where pixels inside the melt pool are 
marked as 1 and those outside are marked as 0. ⊙ is the Hadamard 
product (i.e., elementwise product) operator, and M is a WM 
matrix with the same size as the binary matrix.

This paragraph shows the process to determine Ib. Due to the 
reflected halo around the melt pool, the grayscale intensity in 
the surrounding area may be higher than in some parts within the 
melt pool. Therefore, we divide the subregion into two parts (i.e., 
Parts 1 and 2 in Fig. 3(a)) and process them using different high- 
pass filter thresholds. Similar to the high-pass filter threshold 
used in the CA method, we apply a = 0.8 and a = 0.4 in Eq. (1)
for Parts 1 and 2, respectively (Fig. 3(b)). Afterward, we fill the 
interior of the melt pool to obtain the desired binary matrix Ib

representing the entire melt pool (Fig. 3(c)). This can be performed 

using functions such as “imfill” in MATLAB [40] or “floodFill”/ 
“scipy.ndimage.binary” in OPENCV.

We use three representative melt pool shape cases and four 
divided parts, as shown in Fig. 4, in the WM matrix to optimize 
the entry values on a part-wise basis. The three cases are: 
(1) Case 1 with a small acute CA; (2) Case 2 with a noticeable 
concave shape in the middle of the leading edge, indicating a ten
dency toward an increased CA; and (3) Case 3 with a small residual 
separated from the main body and an obtuse CA. The four parts of 
the WM matrix are designed to help distinguish the three cases and 
are denoted as A, B, C, and Z. To reduce the effect of the reflected 
halo, we estimate the boundaries of each part by detecting edges in 
the binary images of the three cases. These binary images are gen
erated using the same method we used to determine Ib. Part A rep
resents the main region of a regularly shaped melt pool. Part B 
corresponds to the increased height of the pool. Part C indicates 
the potentially missing portion of the melt pool, as observed in 
Cases 2 and 3. Part Z represents the background. A weight factor 
is assigned to each entry in the WM matrix and is denoted as 
WA, WB, WC, or WZ, depending on the corresponding part. WA 

and WB are positive with WA < WB, WC is negative, and WZ is 
zero. Based on this assignment, we expect the evaluation 
numbers to increase as the case number increases. Therefore, the 
critical evaluation number indicating the occurrence of balling 
can be determined from Eq. (7) corresponding to Case 1.

Optimizing the weight factors is necessary to differentiate 
between the various cases. To achieve clear distinctions, we estab
lish constraints as (1) an evaluation number δ > 0 for all the cases, 
(2) δ2:δ1 > 2, δ3:δ1 > 3, where the subscripts indicate the case 
numbers, and an objective function for optimization as

f = (δ2 − 2δ1)2 + (δ3 − 3δ1)2 (8) 

Fig. 2 The workflow of the CA method: (a) original grayscale frame and enlarged subregion, (b) binary image of the subre
gion after thresholding, (c) the largest connected component with its rightmost points marked, and (d) points used for line 
fitting (shown as crosses) and the fitted line (dashed)
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We provide an initial guess as WA = 1, WB = 2, and WC = −1 to 
obtain the initial δ values. The MATLAB function “fmincon” [41] 
(equivalent alternatives as “NLopt” in C++ and “scipy.optimize.
minimize” in PYTHON) is used to optimize WA, WB, and WC for a 
minimum f. With the three cases in Fig. 4, we obtain the ratios 
of these three values as

WA:WB:WC = 1:1.328: −3.442 (9) 

The sensitivity of the results to the three representative cases 
chosen for optimization can be improved by increasing the ratio 
of δ2 to δ1 and the ratio of δ3 to δ1 specified in constraint (2), 
and by correspondingly modifying these ratios in Eq. (8).

Fig. 3 Process for obtaining the desired binary matrix: (a) subregion divided into two parts, (b) binary image after applying 
high-pass filter thresholds, and (c) binary image after filling the interior of the melt pool

Fig. 4 Three cases used for determining entry values in the WM matrix

3 Experimental Setup
Experiments were conducted on a DED additive manufacturing 

research platform setup in the Micro Manufacturing Laboratory at 
National Chung Hsing University, Taichung, Taiwan (Fig. 5). The 
platform is equipped with a YLR-500-MM-AC fiber laser (IPG 
Photonics, Oxford, MA) and a deposition system with a Fig. 5 Experimental setup
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ECM340 powder delivery head (EC Laser, Kunshan, Jiangsu, 
China) and a DPSF-3 powder delivery system (GeniRay Technol
ogy Corporation, New Taipei City, Taiwan). The laser delivers up 
to 500 W of power at a wavelength of 1070 nm. Inconel 718 
powder with particle diameters ranging from approximately 
50 μm to 100 μm is used in the experiments. High-speed video is 
captured at 1000 fps using a VEO E310L optical camera 
(Phantom, Wayne, NJ) with a 532 nm green laser light source 
(Changchun New Industries Optoelectronics Tech. Co., Ltd., 
Changchun, Jilin, China). Simultaneously, acoustic data are col
lected using an SPM0408LE5H-TB MEMS microphone 
(Knowles, Itasca, IL), which has a frequency range of 100 Hz to 
10 kHz, installed around the deposition spot. The microphone is 
installed 9 cm from the deposition location in the XZ plane, at a 
60-degree angle to the deposition direction. Sound signals are col
lected and stored by a PXI 6132 data acquisition system (NI, 
Austin, TX) at a sampling rate of 2 MHz. After deposition, the 
profile of a deposited sample is measured and recorded using a 
VK-X1100 profiler (Keyence, Osaka, Japan) to evaluate surface 
conditions and dimensions. The material and deposition parameters 
adopted in this study are listed in Table 1 [39].

Table 1 Process parameters and materials in the conducted experiments 

Experimental type
Feed rate 
(mm/min)

Flowrate of powder 
(g/min)

Deposition length 
(mm)

Laser power 
(W) Base material Powder material

Line deposition 60 7.09 10 116 SUS304 Inconel 718 (ϕ50 ∼ 150 μm)

The images collected during the experiments are processed using 
MATLAB scripts on a computer with an AMD Ryzen™ 9 7940HS 
CPU (4.0 GHz, AMD, Santa Clara, CA). MATLAB is configured to 
utilize eight threads, which corresponds to the number used 
during processing. The video is stored on an SN850x 4TB solid- 
state drive (Western Digital, San Jose, CA), and all processing is 
performed entirely by the CPU without GPU acceleration.

4 Results and Discussions
We normalize the results from both the CA and WM methods. In 

the CA method, the CAs are normalized by dividing them by 
180 deg. In the WM method, the evaluation numbers are normalized 
by dividing by a theoretical maximum value, which is derived from 
a hypothetical binary image where only Parts A and B are bright, and 
all other parts are dark. The CA method provides a direct and 
explicit indicator to detect the balling phenomenon based on 
physics, while the WM method offers an implicit manner.

In Fig. 6, we compare the CA and WM methods through two sets 
of results, presented together with audible sound signals and depos
ited height data reported in the previous research [39]. We define 
the criteria for detecting balling as follows: in the CA method, a 
contact angle greater than 90 deg or 0.5 after normalization, 
which means non-wetting [41], indicates balling; in the WM 
method, an evaluation number of 0.5 or higher indicates balling. 
The 0.5 criterion for the WM method is derived from the dataset 
shown in Fig. 6(a), where the maximum normalized evaluation 
number is approximately 0.75 (as observed in Case 3). Based on 
Constraint 2 that we established, Case 2 yields an evaluation 
number of 0.5, which we adopt as the threshold for balling detec
tion. This criterion also proves effective when applied to the dataset 
in Fig. 6(b).

Fig. 6 (a) and (b) Two sets of results obtained from four differ
ent methods

In Fig. 6(a), the CA method shows that there was one instance 
where the contact angle was greater than 90 deg. The WM also 
detected the instance. The audible sound method, however, could 
not detect the balling phenomenon. The sample characterization 
confirmed that this instance indeed resulted in the largest deposi
tion height occurring around 4 s. In Fig. 6(b), the data from both 
CA and WM methods show that the process was fairly stable 
(mostly below threshold) from 13 s to 19 s. The deposition 
heights were also consistent. For an audible sound signal, 

however, it is difficult to establish a criterion to determine if the 
balling occurred during that time period.

Overall, the results from the CA and WM methods align well 
with each other and correspond closely to the outcomes from the 
audible sound method and deposition profile. The explicit CA 
method validates the results obtained from the audible sound 
signals. The results show that the audible sound method can 
predict balling slightly earlier, which is beneficial for implement
ing feedback control to mitigate the balling tendency. However, 
this method faces limitations due to its sensitivity to environmental 
noise and the placement of the microphone. The sound energy level 
depends closely on the difference between the deposition direction 
and the microphone orientation. The deposited height is measured 
after the process is complete and is used for comparison purposes.
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In addition to the above results, we record the computational 
speeds of the CA and WM methods using eight threads on the 
previously mentioned CPU. The CA method achieves an average 
processing speed of 665 fps, with a minimum speed of 596 fps. In 
comparison, the WM method achieves an average speed of 
903 fps, with a minimum of 702 fps, making it approximately 1.5 
times faster than the CA method. The performance of both methods 
can be further improved through enhanced parallel computing 
using multithreading or a higher-performance CPU. For the WM 
method, implementing a sparse matrix representation can also 
increase computational efficiency. These results suggest that both 
methods are suitable for potential in-line monitoring applications.

Future work in this research may include implementing a 
machine learning approach to more precisely determine the 
optimal entries in the WM matrix on an entry-wise basis. This 
enhancement would further improve the WM method’s ability to 
capture detailed melt pool features. Additionally, integrating a 
feedback control system into the DED process, by combining 
the CA or WM method with the audible sound method, could 
enable real-time mitigation of the balling phenomenon before it 
happens. As for the closed system, the parameters that can be 
used to control the surface profile are the laser power, the 
volume of the delivered powder, and the deposition spot size. 
The laser power can be modulated by adjusting the pulse duration, 
while the volume of delivered powder can be controlled through 
the feed rate. Additionally, the position of the deposition head 
(i.e., the distance between the base plate and the head) can be auto
matically adjusted to modify the spot size of both the laser and the 
powder simultaneously.

In addition, these methods can be extended to new materials or 
different processing workflows. The CA method requires no recal
ibration, making it readily applicable. In contrast, the WM method 
may require recalibration using three selected representative cases 
to generate new weighted masks. These masks can be validated 
using the CA method or through acoustic-based approaches.

5 Conclusion
We developed two image-based methods, i.e., the CA method 

and the WM method, to monitor the balling phenomenon in 
DED processes. The CA method detects balling by analyzing the 
melt pool’s contact angle, while the WM method generates an eval
uation number to assess balling severity. Experimental validation 
demonstrated that both methods effectively detect the balling phe
nomenon and show a strong correlation with results from an 
audible sound-based monitoring technique, as well as the post- 
processed deposition profile. Performance evaluation showed that 
the WM method achieved a higher average processing speed 
(903 fps) compared to the CA method (665 fps). Both methods 
show strong potential for integration into feedback control 
systems, enhancing process reliability and efficiency.
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