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We develop two in-line monitoring methods—the contact angle (CA) method and the
weighted mask (WM) method—to efficiently detect balling phenomenon in directed
energy deposition (DED) processes. These methods are designed to support process devel-
opers in controlling the process and minimizing instability. The CA method monitors the
melt pool’s CA as a direct and explicit indicator for detecting balling, while the WM
method generates an evaluation number that reflects the likelihood of balling occurrence
in an implicit but faster manner. Experimental validation compares the WM method and an
existing acoustic-based audible sound method against the CA method using the same
dataset of high-speed videos. Using eight threads of an AMD Ryzen" 9 7940HS CPU,
the CA and WM methods achieved processing speeds of 665 fps and 903 fps, respectively.
These results demonstrate that both methods are well-suited for real-time, in-line feedback
control in DED additive manufacturing, enabling improved defect detection, adaptive
process control, and optimization of DED parameters. [DOI: 10.1115/1.4070451]
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1 Introduction

Directed energy deposition (DED), a metal additive manufactur-
ing technique, holds significant application potential in the fields of
aerospace [1-3], transportation [4-6], biomedical implants [7-9],
and remanufacturing [10-12]. Its primary advantage lies in the
ability to produce high-performance and large-scale components
and the compatibility to fabricate composite structures [13—17].
The rapid heating and cooling rates inherent to the DED process
also contribute to the high strength of the manufactured compo-
nents [18]. Furthermore, compared to traditional subtractive man-
ufacturing methods, DED provides higher material efficiency and
design flexibility, enabling the production of geometrically
complex structures [13—16]. Nevertheless, the DED manufacturing
process still faces significant challenges, particularly in optimizing
process parameters and controlling defects [13-16,19,20]. The use
of high-energy heat sources for localized melting and material
deposition makes the process highly sensitive to parameters, such
as laser power, powder feed rate, scanning speed, melt pool tem-
perature, and cooling rate [13-16,19,20]. Inappropriate parameter
settings can result in melt pool instability, uneven deposition,
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excessive thermal stresses, porosity, cracking, lack of fusion, and
other defects [15]. These issues are further intensified by the inher-
ently dynamic thermal environment, often leading to non-uniform
microstructures and inconsistent mechanical properties in the final
part [15,19,20]. To overcome these challenges, in situ monitoring
and closed-loop feedback control systems have been proposed to
optimize process parameters and improve product quality [21-
23]. Various sensing and monitoring techniques, such as image-
based sensing [24-29], spectral analysis [30-32], X-ray imaging
[33-35], and acoustic emission [36-39], offer distinct advantages
but also face significant limitations. Complementary metal-oxide-
semiconductor (CMOS) or charge-coupled device (CCD)
cameras capture optical images to analyze melt pool geometry
[24-26], but their performance can be compromised by laser radi-
ation and intense light from the molten metal. Infrared cameras
monitor thermal profiles and assist in defect prediction, though
their accuracy depends on precise calibration to account for varia-
tions of emissivity across material surfaces [27-29]. Spectral anal-
ysis provides information about the melt pool and temperature, but
is highly sensitive to ambient noise and demands complex calibra-
tion procedures [30-32]. X-ray imaging offers high accuracy for
defect detection but is costly, time-intensive, and currently imprac-
tical for in situ monitoring and closed-loop control [33-35].
Audible sound techniques enable rapid defect detection but are sen-
sitive to environmental noise and printing trajectory [38,39].
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In this article, we develop two novel image-based methods—the
contact angle (CA) method and the weighted mask (WM) method
—for robust and rapid in-line monitoring of the balling phenome-
non in the melt pool during DED processes. Figures 1(a) and 1(b)
show the CAs with normal and balling pools, respectively. Irregu-
larly shaped residual material may also appear ahead of the melt
pool along the machine direction. This balling phenomenon
occurs when the melt pool does not properly wet the substrate or
the previously deposited layer, leading to invisible voids or irregu-
larities in the final product. Both the CA and WM methods are
implemented using high-speed videos, with the setup schematically
shown in Fig. 1(c). For experimental validation, we compare the
results of the WM method and the audible sound method from a
previous study [39] with those obtained using the CA method,
based on the same high-speed video dataset. The processing
speeds of the CA and WM methods, 665 fps and 903 fps, respec-
tively, demonstrate a potential for in-line monitoring and feedback
control, especially when enhanced through parallel computing with
multithreading or a higher-performance CPU.

2 Methodology

In this section, we describe the CA and WM methods. In the
illustrations, the melt pool moves from left to right.

2.1 Contact Angle Method. The CA method predicts the
balling phenomenon by extracting the CA between the melt pool
and the substrate (or the previously deposited layer). The positions
of the camera and laser head are fixed with respect to the melt pool
during the process, allowing us to define a subregion of interest,
shown in the boxed area in Fig. 2(a), to reduce computational
cost. On the other hand, choosing a subregion helps the algorithm
avoid influence from spatter and reflections of light between the
melt pool and substrate. After this step, we convert the RGB
image to a grayscale one with an eight-bit unsigned integer
(unit8) format.

To obtain a binary image, a threshold is applied as a high-pass
filter as

Tg=a><1max (1)

where I,,x is the maximum grayscale intensity in the subregion.
The values above the threshold are set to 1, and values below the
threshold are set to 0. We choose a = 0.8 and obtain a resulting
binary image, as shown in Fig. 2(b). The largest connected compo-
nent within the subregion is then extracted using either “bwlabel”
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in MATLAB [40] or “cv::connectedComponents” in oPENcV. For each
row in the resulting binary image, the rightmost nonzero pixels are
selected and marked to form the set of rightmost points, as shown
in Fig. 2(c).

Based on the resolution for this case, the five rightmost points
closest to the substrate are selected to fit the line for calculating
the CA. Those points are the rightmost points with the largest coor-
dinate values in the v-direction. An iteratively reweighted least
squares method is applied to remove outliers. This method itera-
tively computes residuals from a weighted least squares fitting
(WLSF) and updates the weights assigned to each point based on
a weighting formula (assigning smaller weights to points with
larger residuals).

To perform the fitting, the WLSF utilizes the residual error
function

Ju=) wilvi — ku; — b)’ )
i=1

where w; is the weight assigned to the ith point with image coordi-
nates (u;, v;), k is the slope, and b is the intercept. To minimize the
residual error function, we have

Xn: Wl'(V,' - ku,- - b) =0 (3)
i=1

We rewrite Eq. (3) in matrix form and apply least square fitting
as

{k b} =UTWU)'(UTWYV) )
where
ui 1 Vi wq 0 . 0
up 1 V2 0 wy - 0
U=| . . |,V=| . [[W=] | ..
o : : : .0
u, 1 Vi 0O 0 0 w,

We assign an initial weight of 1 to each point. At each iteration,
the residual for each point is computed as
ku; — b, &)

ri=vi—

and the weights are updated using a simplified Cauchy weight func-
tion as

(6)
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1 +1ril
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Fig.1 (a) Normal melt pool, (b) balling melt pool, and (c) schematic of the camera setup integrated with the DED

machine
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Fig.2 The workflow of the CA method: (a) original grayscale frame and enlarged subregion, (b) binary image of the subre-
gion after thresholding, (c) the largest connected component with its rightmost points marked, and (d) points used for line
fitting (shown as crosses) and the fitted line (dashed)

The iteration process terminates when the residual drops below
0.01 or when the number of iterations exceeds 1000. Once the iter-
ative process terminates, points with weights below a specified
threshold (we choose 0.1 for this study) are considered outliers
and are removed from the dataset. CA is then calculated from k
and serves as the primary indicator for judging the occurrence of
balling. The selection of the threshold value will be discussed
later in Sec. 4.

2.2 Weighted Mask Method. The WM method predicts
balling by generating an evaluation number that reflects the likeli-
hood of balling occurrence. The evaluation number is computed as

m n

6=ZZIb®M )
i=1 j=1

where I, is an m X n binary matrix indicating the melt pool position
within the subregion image, where pixels inside the melt pool are
marked as 1 and those outside are marked as 0. © is the Hadamard
product (i.e., elementwise product) operator, and M is a WM
matrix with the same size as the binary matrix.

This paragraph shows the process to determine I,. Due to the
reflected halo around the melt pool, the grayscale intensity in
the surrounding area may be higher than in some parts within the
melt pool. Therefore, we divide the subregion into two parts (i.e.,
Parts 1 and 2 in Fig. 3(a)) and process them using different high-
pass filter thresholds. Similar to the high-pass filter threshold
used in the CA method, we apply a=0.8 and a=0.4 in Eq. (1)
for Parts 1 and 2, respectively (Fig. 3(b)). Afterward, we fill the
interior of the melt pool to obtain the desired binary matrix I,
representing the entire melt pool (Fig. 3(c)). This can be performed
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using functions such as “imfill” in mMaTLAB [40] or “floodFill”/
“scipy.ndimage.binary” in OPENCV.

We use three representative melt pool shape cases and four
divided parts, as shown in Fig. 4, in the WM matrix to optimize
the entry values on a part-wise basis. The three cases are:
(1) Case 1 with a small acute CA; (2) Case 2 with a noticeable
concave shape in the middle of the leading edge, indicating a ten-
dency toward an increased CA; and (3) Case 3 with a small residual
separated from the main body and an obtuse CA. The four parts of
the WM matrix are designed to help distinguish the three cases and
are denoted as A, B, C, and Z. To reduce the effect of the reflected
halo, we estimate the boundaries of each part by detecting edges in
the binary images of the three cases. These binary images are gen-
erated using the same method we used to determine I,. Part A rep-
resents the main region of a regularly shaped melt pool. Part B
corresponds to the increased height of the pool. Part C indicates
the potentially missing portion of the melt pool, as observed in
Cases 2 and 3. Part Z represents the background. A weight factor
is assigned to each entry in the WM matrix and is denoted as
Wa, Wg, W, or Wy, depending on the corresponding part. Wa
and Wy are positive with W < Wg, Wc is negative, and Wy is
zero. Based on this assignment, we expect the evaluation
numbers to increase as the case number increases. Therefore, the
critical evaluation number indicating the occurrence of balling
can be determined from Eq. (7) corresponding to Case 1.

Optimizing the weight factors is necessary to differentiate
between the various cases. To achieve clear distinctions, we estab-
lish constraints as (1) an evaluation number 6 > O for all the cases,
(2) 02:61 > 2, 83:01 > 3, where the subscripts indicate the case
numbers, and an objective function for optimization as

F=5 =28+ (5 —35)° (8)
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Fig. 3 Process for obtaining the desired binary matrix: (a) subregion divided into two parts, (b) binary image after applying
high-pass filter thresholds, and (c) binary image after filling the interior of the melt pool
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Fig. 4 Three cases used for determining entry values in the WM matrix

We provide an initial guess as Wy =1, Wy =2, and W¢e = -1 to
obtain the initial § values. The MaTLAB function “fmincon” [41]
(equivalent alternatives as “NLopt” in c4++ and “scipy.optimize.-
minimize” in PYTHON) is used to optimize W4, Wg, and W for a
minimum f. With the three cases in Fig. 4, we obtain the ratios
of these three values as

WaWp:We=1:1.328: —3.442 ©)

The sensitivity of the results to the three representative cases
chosen for optimization can be improved by increasing the ratio
of 6, to §; and the ratio of 83 to J; specified in constraint (2),
and by correspondingly modifying these ratios in Eq. (8).

3 Experimental Setup

Experiments were conducted on a DED additive manufacturing
research platform setup in the Micro Manufacturing Laboratory at
National Chung Hsing University, Taichung, Taiwan (Fig. 5). The
platform is equipped with a YLR-500-MM-AC fiber laser (IPG
Photonics, Oxford, MA) and a deposition system with a
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Table 1

Process parameters and materials in the conducted experiments

Feed rate Flowrate of powder Deposition length Laser power
Experimental type (mm/min) (g/min) (mm) (W) Base material Powder material
Line deposition 60 7.09 10 116 SUS304

Inconel 718 (¢50 ~ 150 pm)

ECM340 powder delivery head (EC Laser, Kunshan, Jiangsu,
China) and a DPSF-3 powder delivery system (GeniRay Technol-
ogy Corporation, New Taipei City, Taiwan). The laser delivers up
to 500 W of power at a wavelength of 1070 nm. Inconel 718
powder with particle diameters ranging from approximately
50 um to 100 ym is used in the experiments. High-speed video is
captured at 1000 fps using a VEO E310L optical camera
(Phantom, Wayne, NJ) with a 532 nm green laser light source
(Changchun New Industries Optoelectronics Tech. Co., Ltd.,
Changchun, Jilin, China). Simultaneously, acoustic data are col-
lected using an SPMO408LESH-TB MEMS microphone
(Knowles, Itasca, IL), which has a frequency range of 100 Hz to
10 kHz, installed around the deposition spot. The microphone is
installed 9 cm from the deposition location in the XZ plane, at a
60-degree angle to the deposition direction. Sound signals are col-
lected and stored by a PXI 6132 data acquisition system (NI,
Austin, TX) at a sampling rate of 2 MHz. After deposition, the
profile of a deposited sample is measured and recorded using a
VK-X1100 profiler (Keyence, Osaka, Japan) to evaluate surface
conditions and dimensions. The material and deposition parameters
adopted in this study are listed in Table 1 [39].

The images collected during the experiments are processed using
MATLAB scripts on a computer with an AMD Ryzen" 9 7940HS
CPU (4.0 GHz, AMD, Santa Clara, CA). MATLAB is configured to
utilize eight threads, which corresponds to the number used
during processing. The video is stored on an SN850x 4TB solid-
state drive (Western Digital, San Jose, CA), and all processing is
performed entirely by the CPU without GPU acceleration.

4 Results and Discussions

We normalize the results from both the CA and WM methods. In
the CA method, the CAs are normalized by dividing them by
180 deg. In the WM method, the evaluation numbers are normalized
by dividing by a theoretical maximum value, which is derived from
ahypothetical binary image where only Parts A and B are bright, and
all other parts are dark. The CA method provides a direct and
explicit indicator to detect the balling phenomenon based on
physics, while the WM method offers an implicit manner.

In Fig. 6, we compare the CA and WM methods through two sets
of results, presented together with audible sound signals and depos-
ited height data reported in the previous research [39]. We define
the criteria for detecting balling as follows: in the CA method, a
contact angle greater than 90 deg or 0.5 after normalization,
which means non-wetting [41], indicates balling; in the WM
method, an evaluation number of 0.5 or higher indicates balling.
The 0.5 criterion for the WM method is derived from the dataset
shown in Fig. 6(a), where the maximum normalized evaluation
number is approximately 0.75 (as observed in Case 3). Based on
Constraint 2 that we established, Case 2 yields an evaluation
number of 0.5, which we adopt as the threshold for balling detec-
tion. This criterion also proves effective when applied to the dataset
in Fig. 6(b).

In Fig. 6(a), the CA method shows that there was one instance
where the contact angle was greater than 90 deg. The WM also
detected the instance. The audible sound method, however, could
not detect the balling phenomenon. The sample characterization
confirmed that this instance indeed resulted in the largest deposi-
tion height occurring around 4 s. In Fig. 6(b), the data from both
CA and WM methods show that the process was fairly stable
(mostly below threshold) from 13s to 19s. The deposition
heights were also consistent. For an audible sound signal,

Journal of Manufacturing Science and Engineering

=
EE R FAC T )
= | o i
) I :
o 1 1
8z 1 £ I
=2 A
= rar| .
2 AP N . |
. L 3 Uy 1 4 |
. . P |
= r ¥ — . . ” —
=z 0.4} | audible sound method :
=2 1 f, = T Y
g 0.2 [N \ L
; | | R | I
I L
E oo o .
= - L
= 13 } | I
g M ~nl ) o
Z 1 i e Rk -
E‘J dcpo»mon pmlllc (converted to nmu}
= 05 : ; 7
0 2 4 6 8 !0 I2 I4 El‘) 18 20
time (s}
0.891s 7.204s 10.274s 14.075s
g o I | = |
$E | 0o |
ES b ! !
E I T e
g f M
I
I
=1 I
8 m |
== e
E & T
g LT [
| 1
oH L :
S | ; _
é 0.4+ | audibje sound method
= " i P !
=] | y 1
=] | ! 1
E 0 T [
! i
= 15] - :
| %! & .
= | 9 AT i
g ; !
:,'P h dt.pus;[]un profile (converted to time)
= 05 : - :
0 2 4 6 8 00 12 14 16 18 20
time ()

Fig. 6 (a) and (b) Two sets of results obtained from four differ-
ent methods

however, it is difficult to establish a criterion to determine if the
balling occurred during that time period.

Overall, the results from the CA and WM methods align well
with each other and correspond closely to the outcomes from the
audible sound method and deposition profile. The explicit CA
method validates the results obtained from the audible sound
signals. The results show that the audible sound method can
predict balling slightly earlier, which is beneficial for implement-
ing feedback control to mitigate the balling tendency. However,
this method faces limitations due to its sensitivity to environmental
noise and the placement of the microphone. The sound energy level
depends closely on the difference between the deposition direction
and the microphone orientation. The deposited height is measured
after the process is complete and is used for comparison purposes.
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In addition to the above results, we record the computational
speeds of the CA and WM methods using eight threads on the
previously mentioned CPU. The CA method achieves an average
processing speed of 665 fps, with a minimum speed of 596 fps. In
comparison, the WM method achieves an average speed of
903 fps, with a minimum of 702 fps, making it approximately 1.5
times faster than the CA method. The performance of both methods
can be further improved through enhanced parallel computing
using multithreading or a higher-performance CPU. For the WM
method, implementing a sparse matrix representation can also
increase computational efficiency. These results suggest that both
methods are suitable for potential in-line monitoring applications.

Future work in this research may include implementing a
machine learning approach to more precisely determine the
optimal entries in the WM matrix on an entry-wise basis. This
enhancement would further improve the WM method’s ability to
capture detailed melt pool features. Additionally, integrating a
feedback control system into the DED process, by combining
the CA or WM method with the audible sound method, could
enable real-time mitigation of the balling phenomenon before it
happens. As for the closed system, the parameters that can be
used to control the surface profile are the laser power, the
volume of the delivered powder, and the deposition spot size.
The laser power can be modulated by adjusting the pulse duration,
while the volume of delivered powder can be controlled through
the feed rate. Additionally, the position of the deposition head
(i.e., the distance between the base plate and the head) can be auto-
matically adjusted to modify the spot size of both the laser and the
powder simultaneously.

In addition, these methods can be extended to new materials or
different processing workflows. The CA method requires no recal-
ibration, making it readily applicable. In contrast, the WM method
may require recalibration using three selected representative cases
to generate new weighted masks. These masks can be validated
using the CA method or through acoustic-based approaches.

5 Conclusion

We developed two image-based methods, i.e., the CA method
and the WM method, to monitor the balling phenomenon in
DED processes. The CA method detects balling by analyzing the
melt pool’s contact angle, while the WM method generates an eval-
uation number to assess balling severity. Experimental validation
demonstrated that both methods effectively detect the balling phe-
nomenon and show a strong correlation with results from an
audible sound-based monitoring technique, as well as the post-
processed deposition profile. Performance evaluation showed that
the WM method achieved a higher average processing speed
(903 fps) compared to the CA method (665 fps). Both methods
show strong potential for integration into feedback control
systems, enhancing process reliability and efficiency.
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